Relationship between material properties and transparent heater performance for both bulk-like and percolative nanostructured networks.
نویسندگان
چکیده
Transparent heaters are important for many applications and in the future are likely to be fabricated from thin, conducting, nanostructured networks. However, the electrical properties of such networks are almost always controlled by percolative effects. The impact of percolation on heating effects has not been considered, and the material parameter combinations that lead to efficient performance are not known. In fact, figures of merit for transparent heaters have not been elucidated, either in bulk-like or percolative systems. Here, we develop a simple yet comprehensive model describing the operation of transparent heaters. By considering the balance of Joule heating versus power dissipated by both convection and radiation, we derive an expression for the time-dependent heater temperature as a function of both electrical and thermal parameters. This equation can be modified to describe the relationship between temperature, optical transmittance, and electrical/thermal parameters in both bulk-like and percolative systems. By performing experiments on silver nanowire networks, systems known to display both bulk-like and percolative regimes, we show the model to describe real systems extremely well. This work shows the performance of transparent heaters in the percolative regime to be significantly less efficient compared to the bulk-like regime, implying the diameter of the nanowires making up the network to be critical. The model allows the identification of figures of merit for networks in both bulk-like and percolative regimes. We show that metallic nanowire networks are most promising, closely followed by CVD graphene, with networks of solution-processed graphene and carbon nanotubes being much less efficient.
منابع مشابه
Al-Doped ZnO Monolayer as a Promising Transparent Electrode Material: A First-Principles Study
Al-doped ZnO has attracted much attention as a transparent electrode. The graphene-like ZnO monolayer as a two-dimensional nanostructure material shows exceptional properties compared to bulk ZnO. Here, through first-principle calculations, we found that the transparency in the visible light region of Al-doped ZnO monolayer is significantly enhanced compared to the bulk counterpart. In particul...
متن کاملThe Relationship Between Non-Transparent Financial Reporting and Risk Stock Futures Fall Due to the Size and Performance
The purpose of this study was to investigate the relationship between stock futures fall risk with non-transparent financial reporting at three levels of size, efficiency and return on equity, in the period 2010 to 2014 was in Tehran Stock Exchange. The population of the study are all companies listed in Tehran Stock Exchange. Data collected and calculated by using Excel software Eviews 7 been ...
متن کاملEvaluation of microstructure and mechanical properties of bulk nanostructured Ti5Si3 and Ti5Si3-Al2O3 nanocomposite
Mechanical alloying and vacuum sintering have been used to produce bulk nanostructured Ti5Si3 and Ti5Si3-15Wt.% Al2O3 nanocomposite. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used to study the microstructural characteristics of the samples. Indentation method was used to calculate hardness, elastic modulus and fracture toughness ...
متن کاملDosimetric Characteristics of Transparent Bolus for External Beam Radiotherapy
Introduction: In radiotherapy, the bolus is often used while treating the tumor under the uneven surfaces of the patients for correcting the anatomical irregularities and increasing skin dose. Wet cotton and wet gauze are still used in developing countries, since the use of wet cotton and wet gauze has certain disadvantages, there is a need for transparent bolus which ...
متن کاملCharacterization of Elastic Properties of Porous Graphene Using an Ab Initio Study
Importance of covalent bonded two-dimensional monolayer nanostructures and also hydrocarbons is undeniably responsible for creation of new fascinating materials like polyphenylene polymer, a hydrocarbon super honeycomb network, so-called porous graphene. The mechanical properties of porous graphene such as its Young’s modulus, Poisson’s ratio and the bulk modulus as the determinative properties...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2014